Extensions 1→N→G→Q→1 with N=C32 and Q=C22xD4

Direct product G=NxQ with N=C32 and Q=C22xD4
dρLabelID
D4xC62144D4xC6^2288,1019

Semidirect products G=N:Q with N=C32 and Q=C22xD4
extensionφ:Q→Aut NdρLabelID
C32:(C22xD4) = C22xS3wrC2φ: C22xD4/C22D4 ⊆ Aut C3224C3^2:(C2^2xD4)288,1031
C32:2(C22xD4) = C2xS3xD12φ: C22xD4/C2xC4C22 ⊆ Aut C3248C3^2:2(C2^2xD4)288,951
C32:3(C22xD4) = C2xD6:D6φ: C22xD4/C2xC4C22 ⊆ Aut C3248C3^2:3(C2^2xD4)288,952
C32:4(C22xD4) = S32xD4φ: C22xD4/D4C22 ⊆ Aut C32248+C3^2:4(C2^2xD4)288,958
C32:5(C22xD4) = C22xD6:S3φ: C22xD4/C23C22 ⊆ Aut C3296C3^2:5(C2^2xD4)288,973
C32:6(C22xD4) = C22xC3:D12φ: C22xD4/C23C22 ⊆ Aut C3248C3^2:6(C2^2xD4)288,974
C32:7(C22xD4) = C2xS3xC3:D4φ: C22xD4/C23C22 ⊆ Aut C3248C3^2:7(C2^2xD4)288,976
C32:8(C22xD4) = C2xDic3:D6φ: C22xD4/C23C22 ⊆ Aut C3224C3^2:8(C2^2xD4)288,977
C32:9(C22xD4) = C2xC6xD12φ: C22xD4/C22xC4C2 ⊆ Aut C3296C3^2:9(C2^2xD4)288,990
C32:10(C22xD4) = C22xC12:S3φ: C22xD4/C22xC4C2 ⊆ Aut C32144C3^2:10(C2^2xD4)288,1005
C32:11(C22xD4) = S3xC6xD4φ: C22xD4/C2xD4C2 ⊆ Aut C3248C3^2:11(C2^2xD4)288,992
C32:12(C22xD4) = C2xD4xC3:S3φ: C22xD4/C2xD4C2 ⊆ Aut C3272C3^2:12(C2^2xD4)288,1007
C32:13(C22xD4) = C2xC6xC3:D4φ: C22xD4/C24C2 ⊆ Aut C3248C3^2:13(C2^2xD4)288,1002
C32:14(C22xD4) = C22xC32:7D4φ: C22xD4/C24C2 ⊆ Aut C32144C3^2:14(C2^2xD4)288,1017


׿
x
:
Z
F
o
wr
Q
<